Fit univariate latent change score models.
Usage
fit_uni_lcsm(
data,
var,
model,
add = NULL,
mimic = "Mplus",
estimator = "MLR",
missing = "FIML",
return_lavaan_syntax = FALSE,
...
)
Arguments
- data
A data frame in "wide" format, i.e. one column for each measurement point and one row for each observation.
- var
Vector, specifying the variable names of each measurement point sequentially.
- model
List of model specifications (logical) for variables specified in
var
.alpha_constant
(Constant change factor)alpha_piecewise
(Piecewise constant change factors)alpha_piecewise_num
(Changepoint of piecewise constant change factors. In an example with 10 repeated measurements, settingalpha_piecewise_num
to 5 would estimate two seperate constant change factors, a first one for changes up to timepoint 5, and a second one for changes from timepoint 5 onwards (in this example timepoint 10).,alpha_linear
(Linear change factor)beta
(Proportional change factor)phi
(Autoregression of change scores)
- add
String, lavaan syntax to be added to the model
- mimic
See
mimic
argument in lavOptions.- estimator
See
estimator
argument in lavOptions.- missing
See
missing
argument in lavOptions.- return_lavaan_syntax
Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.
- ...
Additional arguments to be passed to lavOptions.
References
Ghisletta, P., & McArdle, J. J. (2012). Latent Curve Models and Latent Change Score Models Estimated in R. Structural Equation Modeling: A Multidisciplinary Journal, 19(4), 651–682. doi:10.1080/10705511.2012.713275.
Grimm, K. J., Ram, N., & Estabrook, R. (2017). Growth Modeling—Structural Equation and Multilevel Modeling Approaches. New York: The Guilford Press.
McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60(1), 577–605. doi:10.1146/annurev.psych.60.110707.163612 .
Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. doi:10.18637/jss.v048.i02 .
Examples
# Fit univariate latent change score model
fit_uni_lcsm(data = data_uni_lcsm,
var = names(data_uni_lcsm)[2:4],
model = list(alpha_constant = TRUE,
beta = FALSE,
phi = FALSE))
#> Warning: lavaan WARNING: some cases are empty and will be ignored:
#> 179 223 239 258 306 359 430
#> lavaan 0.6.14 ended normally after 61 iterations
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 8
#> Number of equality constraints 2
#>
#> Used Total
#> Number of observations 493 500
#> Number of missing patterns 7
#>
#> Model Test User Model:
#> Standard Scaled
#> Test Statistic 0.703 0.704
#> Degrees of freedom 3 3
#> P-value (Chi-square) 0.873 0.872
#> Scaling correction factor 0.998
#> Yuan-Bentler correction (Mplus variant)