Simulate data from univariate latent change score model parameter estimates
Source:R/sim_lcsm_data.R
sim_uni_lcsm.Rd
This function simulate data from univariate latent change score model parameter estimates using simulateData.
Usage
sim_uni_lcsm(
timepoints,
model,
model_param = NULL,
var = "x",
change_letter = "g",
sample.nobs = 500,
na_pct = 0,
seed = NULL,
...,
return_lavaan_syntax = FALSE
)
Arguments
- timepoints
See specify_uni_lcsm
- model
See specify_uni_lcsm
- model_param
List, specifying parameter estimates for the LCSM that has been specified in the argument 'model'
gamma_lx1
: Mean of latent true scores x (Intercept),sigma2_lx1
: Variance of latent true scores x,sigma2_ux
: Variance of observed scores x,alpha_g2
: Mean of change factor (g2),alpha_g3
: Mean of change factor (g3),sigma2_g2
: Variance of constant change factor (g2).sigma2_g3
: Variance of constant change factor (g3),sigma_g2lx1
: Covariance of constant change factor (g2) with the initial true score x (lx1),sigma_g3lx1
: Covariance of constant change factor (g3) with the initial true score x (lx1),sigma_g2g3
: Covariance of change factors (g2 and g2),phi_x
: Autoregression of change scores x.
- var
See specify_uni_lcsm
- change_letter
See specify_uni_lcsm
- sample.nobs
Numeric, number of cases to be simulated, see specify_uni_lcsm
- na_pct
Numeric, percentage of random missing values in the simulated dataset (0 to 1)
- seed
Set seed for data simulation, see simulateData
- ...
Arguments to be passed on to simulateData
- return_lavaan_syntax
Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat.
Examples
# Simulate data from univariate LCSM parameters
sim_uni_lcsm(timepoints = 10,
model = list(alpha_constant = TRUE, beta = FALSE, phi = TRUE),
model_param = list(gamma_lx1 = 21,
sigma2_lx1 = 1.5,
sigma2_ux = .2,
alpha_g2 = -.93,
sigma2_g2 = .1,
sigma_g2lx1 = .2,
phi_x = .2),
return_lavaan_syntax = FALSE,
sample.nobs = 1000,
na_pct = .3)
#> Parameter estimates for the data simulation are taken from the argument 'model_param'.
#> All parameter estimates for the LCSM have been specified in the argument 'model_param'.
#> # A tibble: 1,000 × 11
#> id x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 21.7 NA 22.0 NA 20.4 NA NA 19.5 18.4 17.9
#> 2 2 19.5 19.1 NA 17.9 16.8 14.9 15.6 14.3 12.9 12.1
#> 3 3 20.0 19.8 18.2 18.5 17.1 15.2 14.0 NA 12.9 12.7
#> 4 4 22.3 21.2 21.2 NA 18.2 17.3 15.8 NA NA NA
#> 5 5 21.2 21.3 NA 19.3 NA 18.1 17.0 16.3 15.4 14.3
#> 6 6 21.0 NA 21.3 NA 19.7 19.4 20.0 19.4 NA 17.9
#> 7 7 20.7 19.3 17.0 NA 14.3 12.8 11.0 8.54 7.47 5.66
#> 8 8 21.9 NA NA NA 15.8 12.6 12.2 11.3 9.99 8.49
#> 9 9 22.1 21.2 20.5 18.8 19.7 18.6 17.6 NA 16.7 NA
#> 10 10 NA NA 20.3 19.1 18.3 17.2 14.9 NA 14.4 NA
#> # … with 990 more rows