Simulate data from univariate latent change score model parameter estimates
Source:R/sim_lcsm_data.R
      sim_uni_lcsm.RdThis function simulate data from univariate latent change score model parameter estimates using simulateData.
Usage
sim_uni_lcsm(
  timepoints,
  model,
  model_param = NULL,
  var = "x",
  change_letter = "g",
  sample.nobs = 500,
  na_pct = 0,
  seed = NULL,
  ...,
  return_lavaan_syntax = FALSE
)Arguments
- timepoints
- See specify_uni_lcsm 
- model
- See specify_uni_lcsm 
- model_param
- List, specifying parameter estimates for the LCSM that has been specified in the argument 'model' - gamma_lx1: Mean of latent true scores x (Intercept),
- sigma2_lx1: Variance of latent true scores x,
- sigma2_ux: Variance of observed scores x,
- alpha_g2: Mean of change factor (g2),
- alpha_g3: Mean of change factor (g3),
- sigma2_g2: Variance of constant change factor (g2).
- sigma2_g3: Variance of constant change factor (g3),
- sigma_g2lx1: Covariance of constant change factor (g2) with the initial true score x (lx1),
- sigma_g3lx1: Covariance of constant change factor (g3) with the initial true score x (lx1),
- sigma_g2g3: Covariance of change factors (g2 and g2),
- phi_x: Autoregression of change scores x.
 
- var
- See specify_uni_lcsm 
- change_letter
- See specify_uni_lcsm 
- sample.nobs
- Numeric, number of cases to be simulated, see specify_uni_lcsm 
- na_pct
- Numeric, percentage of random missing values in the simulated dataset (0 to 1) 
- seed
- Set seed for data simulation, see simulateData 
- ...
- Arguments to be passed on to simulateData 
- return_lavaan_syntax
- Logical, if TRUE return the lavaan syntax used for simulating data. To make it look beautiful use the function cat. 
Examples
# Simulate data from univariate LCSM parameters 
sim_uni_lcsm(timepoints = 10, 
             model = list(alpha_constant = TRUE, beta = FALSE, phi = TRUE), 
             model_param = list(gamma_lx1 = 21, 
                                sigma2_lx1 = 1.5,
                                sigma2_ux = .2, 
                                alpha_g2 = -.93,
                                sigma2_g2 = .1,
                                sigma_g2lx1 = .2,
                                phi_x = .2),
             return_lavaan_syntax = FALSE, 
             sample.nobs = 1000,
             na_pct = .3)
#> Parameter estimates for the data simulation are taken from the argument 'model_param'.
#> All parameter estimates for the LCSM have been specified in the argument 'model_param'.
#> # A tibble: 1,000 × 11
#>       id    x1    x2    x3    x4    x5    x6    x7    x8    x9   x10
#>    <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1     1  21.7  NA    22.0  NA    20.4  NA    NA   19.5  18.4  17.9 
#>  2     2  19.5  19.1  NA    17.9  16.8  14.9  15.6 14.3  12.9  12.1 
#>  3     3  20.0  19.8  18.2  18.5  17.1  15.2  14.0 NA    12.9  12.7 
#>  4     4  22.3  21.2  21.2  NA    18.2  17.3  15.8 NA    NA    NA   
#>  5     5  21.2  21.3  NA    19.3  NA    18.1  17.0 16.3  15.4  14.3 
#>  6     6  21.0  NA    21.3  NA    19.7  19.4  20.0 19.4  NA    17.9 
#>  7     7  20.7  19.3  17.0  NA    14.3  12.8  11.0  8.54  7.47  5.66
#>  8     8  21.9  NA    NA    NA    15.8  12.6  12.2 11.3   9.99  8.49
#>  9     9  22.1  21.2  20.5  18.8  19.7  18.6  17.6 NA    16.7  NA   
#> 10    10  NA    NA    20.3  19.1  18.3  17.2  14.9 NA    14.4  NA   
#> # … with 990 more rows