Select sample providing enough data to identify sudden gains
Source:R/select_cases.R
select_cases.Rd
Select sample for further sudden gains analyses depending on specified methods.
The following table shows the different data patterns that get selected when method = "pattern"
.
This function goes through the data and selects all cases with at least one of the following data patterns.
Pattern | x1 | x2 | x3 | x4 | x5 | x6 |
1. | x | N | x | x | . | . |
2. | x | N | x | . | x | . |
3. | x | . | N | x | x | . |
4. | x | . | N | x | . | x |
Note. x1 to x6 are consecutive data points of the primary outcome measure. 'x' = Available data; '.' = Missing data. 'N' represents available data to be examined as a possible pregain session.
Usage
select_cases(
data,
id_var_name,
sg_var_list,
method = c("pattern", "min_sess"),
min_sess_num = NULL,
return_id_lgl = FALSE
)
Arguments
- data
A dataset in wide format with an id variable and the sudden gains variables.
- id_var_name
String, specifying the name of the ID variable. Each row should have a unique value.
- sg_var_list
Vector, specifying the variable names of each measurement point sequentially.
- method
String, specifying the method used to select cases:
pattern
ormin_sess
.- min_sess_num
Numeric, minimum number of available sessions to be selected. This argument needs to be specified if
method = min_sess
.- return_id_lgl
Logical, if
TRUE
the function returns the ID variable and a new variablesg_select
indicating whether there is enough data available to identify sudden gains. If set toFALSE
this function returns the input data together with the new variablesg_select
.
Value
A wide dataset indicating with all cases and a variable indicating whether each cases provides enough data to identify sudden gains.
Examples
# 1. method = "pattern"
select_cases(data = sgdata,
id_var_name = "id",
sg_var_list = c("bdi_s1", "bdi_s2", "bdi_s3", "bdi_s4",
"bdi_s5", "bdi_s6", "bdi_s7", "bdi_s8",
"bdi_s9", "bdi_s10", "bdi_s11", "bdi_s12"),
method = "pattern",
return_id_lgl = FALSE)
#> The method 'pattern' was used to select cases.
#> See help('select_cases') for more information.
#> # A tibble: 43 × 32
#> id bdi_s0 bdi_s1 bdi_s2 bdi_s3 bdi_s4 bdi_s5 bdi_s6 bdi_s7 bdi_s8 bdi_s9
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 33 35 37 34 23 24 21 29 17 11
#> 2 2 26 26 NA 26 NA 27 17 19 11 10
#> 3 3 40 35 38 35 37 36 37 NA 35 26
#> 4 4 33 31 30 32 22 22 20 21 19 24
#> 5 5 39 39 37 36 26 26 23 21 19 6
#> 6 6 35 37 NA 23 NA 23 21 NA NA 19
#> 7 7 NA 37 NA 23 21 NA 21 NA NA NA
#> 8 8 40 41 37 NA NA NA NA NA NA NA
#> 9 9 33 35 34 32 23 24 22 21 17 14
#> 10 10 34 35 35 25 25 17 17 16 16 11
#> # … with 33 more rows, and 21 more variables: bdi_s10 <dbl>, bdi_s11 <dbl>,
#> # bdi_s12 <dbl>, bdi_fu1 <dbl>, bdi_fu2 <dbl>, rq_s0 <dbl>, rq_s1 <dbl>,
#> # rq_s2 <dbl>, rq_s3 <dbl>, rq_s4 <dbl>, rq_s5 <dbl>, rq_s6 <dbl>,
#> # rq_s7 <dbl>, rq_s8 <dbl>, rq_s9 <dbl>, rq_s10 <dbl>, rq_s11 <dbl>,
#> # rq_s12 <dbl>, rq_fu1 <dbl>, rq_fu2 <dbl>, sg_select <lgl>
# 2. method = "min_sess"
select_cases(data = sgdata,
id_var_name = "id",
sg_var_list = c("bdi_s1", "bdi_s2", "bdi_s3", "bdi_s4",
"bdi_s5", "bdi_s6", "bdi_s7", "bdi_s8",
"bdi_s9", "bdi_s10", "bdi_s11", "bdi_s12"),
method = "min_sess",
min_sess_num = 9,
return_id_lgl = TRUE)
#> The method 'min_sess' was used to select cases.
#> # A tibble: 43 × 2
#> id sg_select
#> <dbl> <lgl>
#> 1 1 TRUE
#> 2 2 TRUE
#> 3 3 TRUE
#> 4 4 TRUE
#> 5 5 TRUE
#> 6 6 FALSE
#> 7 7 FALSE
#> 8 8 FALSE
#> 9 9 TRUE
#> 10 10 TRUE
#> # … with 33 more rows